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[11 We assess the accuracy of global-gridded terrestrial water storage (TWS) estimates
derived from temporal gravity field variations observed by the Gravity Recovery and
Climate Experiment (GRACE) satellites. The TWS data set has been corrected for signal
modification due to filtering and truncation. Simulations of terrestrial water storage
variations from land-hydrology models are used to infer relationships between regional
time series representing different spatial scales. These relationships, which are
independent of the actual GRACE data, are used to extrapolate the GRACE TWS
estimates from their effective spatial resolution (length scales of a few hundred
kilometers) to finer spatial scales (~100 km). Gridded, scaled data like these enable users
who lack expertise in processing and filtering the standard GRACE spherical harmonic
geopotential coefficients to estimate the time series of TWS over arbitrarily shaped
regions. In addition, we provide gridded fields of leakage and GRACE measurement
errors that allow users to rigorously estimate the associated regional TWS uncertainties.
These fields are available for download from the GRACE project website (available at
http://grace.jpl.nasa.gov). Three scaling relationships are examined: a single gain factor
based on regionally averaged time series, spatially distributed (i.e., gridded) gain factors
based on time series at each grid point, and gridded-gain factors estimated as a function

of temporal frequency. While regional gain factors have typically been used in
previously published studies, we find that comparable accuracies can be obtained from
scaled time series based on gridded gain factors. In regions where different temporal
modes of TWS variability have significantly different spatial scales, gain factors based
on the first two methods may reduce the accuracy of the scaled time series. In these
cases, gain factors estimated separately as a function of frequency may be necessary to

achieve accurate results.
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1. Introduction

[2] The Gravity Recovery and Climate Experiment
(GRACE) observes temporal variations of Earth’s gravita-
tional potential. After atmospheric and oceanic effects are
accounted for, the remaining signal on monthly to interan-
nual timescales is mostly related to variations of terrestrial
water storage (TWS). Estimates of water storage variations
suffer from signal degradation due to measurement errors
and noise, which are manifested as both random errors that
increase as a function of spherical harmonic spectral degree
[Wahr et al., 2006], and systematic errors that are corre-
lated within a particular spectral order [Swenson and Wahr,
2006]. Several filtering approaches currently exist to either
damp or isolate and remove these errors. In practice, how-
ever, filters also modify the true geophysical signal of inter-
est. Filter design focuses on this trade-off, and attempts to
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minimize signal loss while maximizing noise reduction
[Swenson and Wahr, 2011].

[3] Because the spatial resolution of filtered GRACE
data is typically more coarse than that of other hydrological
data sets, it is necessary to reconcile the differences in spa-
tial scale between data sets before an equitable analysis can
be performed. When the signal modification resulting from
filtering the GRACE data is not accounted for, apparent dif-
ferences between the TWS estimates will erroneously be
attributed to either shortcomings in the observations or
model data, when these differences are in fact due to a mis-
match in spatial scales [Tang et al., 2010].

[4] A straightforward way to reconcile spatial resolution
discrepancies is to filter each data set in the same way. This
approach has been used previously when validating satel-
lite-based estimates of winter precipitation [Swenson,
2010] and global land-hydrology models [e.g., Schmidt
et al., 2006]. An alternate approach is to scale the GRACE
data to account for the effect of the filter on the signal. A
number of studies [e.g., Swenson and Wahr, 2007; Rodell
etal.,2004a; Klees et al., 2007 ; Landerer et al., 2010] have
estimated the signal attenuation in basin-averaged time
series and applied a gain factor to the GRACE observations.
If it is not restored, signal attenuation will reduce the ability
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to close the regional water balance, or when the water
budget is used to estimate one component as a residual, sig-
nal attenuation becomes an error in the residual. As it is
cumbersome for users of GRACE data to estimate the
signal degradation via the described route, hydrological
research would greatly benefit from gridded-GRACE data
that can be used as an independent, stand-alone, and unam-
biguous data set for hydrology applications without a geo-
desist’s assistance [Rodell et al., 2010]. This would allow
users to average gridded-GRACE data over user-defined
regions, where the signal attenuation has already been cor-
rected for as part of the GRACE postprocessing, and the
errors and uncertainties of a regional average can also be
computed from gridded data.

[5] In this paper, we describe the scaling technique used
to restore some of the signal loss in regionally averaged
time series due to filtering and truncation of GRACE TWS
observations, and apply it to regions consisting of 1° x 1°
grid cells. The resulting data set is publicly available via
the Jet Propulsion Laboratory’s TELLUS website (avail-
able at http://grace.jpl.nasa.gov). We then compare the ac-
curacy of regional time series scaled using a bulk gain
factor to a regional time series computed using the gridded-
data set to which distributed gain factors have been applied.
Next, we compare the effectiveness of single gain factors
relative to frequency-dependent gain factors for a scenario
where seasonally varying TWS signals have significantly
different spatial patterns than secularly varying TWS signals.
We then discuss the limitations of this scaling approach,
which should help users of gridded-GRACE TWS data to re-
alize the full potential of this data set while being aware of
the uncertainties. The goal of this approach is to simplify the
use of GRACE TWS observations for hydrological applica-
tions, and to allow for a rigorous quantification of leakage
and measurement errors.

2. Gridded-GRACE Data Set

[6] The standard products of the GRACE project are sets
of spherical harmonic coefficients describing the monthly
variations in Earth’s gravity field, which can be inverted to
estimate changes in mass at the surface [Wahr et al., 1998].
After filtering to reduce the presence of measurement
errors, the data can be gridded, i.e., converted from spectral
coordinates to geographical coordinates, in order to create
maps of surface mass variations.

[71 The GRACE filter used in this study consists of two
parts. The first filter is designed to remove systematic errors
that are characterized by correlations between certain
spherical harmonic coefficients; these errors are manifested
as north-south-oriented “stripes” in maps of GRACE TWS
([Swenson and Wahr, 2006], Figure 1). The second filter is
a Gaussian averaging filter with a half-width of 300 km that
reduces random errors in higher degree spherical harmonic
coefficients not removed by “de-striping” [Wahr et al.,
1998, 2006]. The Gaussian filter is a smoothing operation
and reduces the spatial resolution of GRACE observations
by damping the higher degree coefficients.

[8] Another feature of GRACE data is that the gravity
field solutions are typically truncated at a spectral degree
Imax < 60. Thus, signals having spatial variability with spa-
tial scales finer than a few hundred kilometers are not
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resolved by GRACE (e.g., /max = 60 represents a wavelength
of ~330 km). This form of signal loss can be thought of as
resulting from the application of a spectral low-pass filter.

[0] The errors in the filtered data are estimated following
the method described by Wahr et al. [2006]. The top panel
of Figure 1 shows the root-mean-square (RMS) variability
in the filtered GRACE TWS data, gridded at 1° spatial re-
solution. The bottom panel shows our estimate of the RMS
measurement error, which exhibits a zonally banded pat-
tern, with maximum errors of ~36 mm water-equivalent
height at lower latitudes; poleward, the error decreases to
<15 mm.

3. Signal Attenuation From Filtering

[10] All water storage observations from GRACE repre-
sent average values, in both space and time. Temporally,
GRACE data are approximately monthly averaged quanti-
ties. Because of truncation and filtering in the spectral do-
main, GRACE data are also spatially averaged, with spatially
varying weights. This results in a time series that differs
from the true, i.e., uniformly weighted, time series; this dif-
ference is often referred to as “leakage.” The leakage error
depends on the filtering process as well as the characteristics
of the signal.

[11] The effects of the successive filter operations on the
GRACE observations are shown in Figure 2. In the top left
panel, the RMS variation of the original GRACE data are
shown. Large amplitudes and prominent stripe-like features
can be observed. After filtering (Figure 2, bottom left panel;
note the different scale), the presence of these features is
largely absent, indicating the effectiveness of the filtering
process in reducing errors. However, the filters’ effects on
the actual signal cannot be ascertained from GRACE data
alone. Instead, simulations based on realistic TWS models
can be used [Swenson et al., 2003 ; Seo and Wilson, 2005].

[12] To obtain quantitative estimates of signal attenua-
tion and leakage error that arise from the application of
these GRACE postprocessing filters, we use synthetic
monthly TWS anomalies form January 2003 to December
2009 simulated by the NOAH land model, running within
the Global Land-Data Assimilation System (GLDAS-
NOAH [Rodell et al., 2004b]). GLDAS-NOAH does not
explicitly simulate groundwater and surface water, and we
exclude TWS variations of glaciers and ice sheets, as these
are either not included or unrealistic due to missing model
physics. Methods to correct for signal attenuation for
Greenland and Antarctica can be found by, e.g., Velicogna
[2009] and Chen et al. [2009]. In order to create a synthetic
TWS data set, the model data are first converted to spheri-
cal harmonic coefficients, and the two-step GRACE filter is
applied. Next, the coefficients are remapped to the original
1 x 1 latitude/longitude grid [Wahr et al., 1998] to quantify
the signal attenuation.

[13] The original GLDAS-NOAH model data (Figure 2,
top right panel) at 1 x 1° resolution is taken as the refer-
ence, relative to which the filtering effects are evaluated.
When applying GRACE filters to the model data (Figure 2,
bottom right panel), an implicit filtering step consists of trun-
cating the model data at a spectral degree and order of 60 (or
less), since most GRACE observations are only provided at
that resolution. This truncation alone effectively reduces the
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GRACE RMS: CSR-RL04sw06;sw06,300km,01/2003-08/2010

Figure 1.
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(Top) Root-mean-square variability of filtered GRACE TWS observations (CSR-RL04), and

(bottom) corresponding estimates of the measurement error based on Wahr et al. [2006]. Note that we
have removed longer than annual TWS signal variations to avoid the inflation of the error from these

long-period TWS variations. Units: mm-H,O.

spatial resolution from ~110 km to ~330 km at the equator.
Geophysical signals with a prominent north-south orientation
are further attenuated by the de-striping filter, and smoothing
the truncated, de-striped data with a Gaussian averaging
radius of 300 km also reduces signal variance. Signals
along coastlines are particularly prone to signal attenuation
because the filtering process removes short wavelength fea-
tures. Therefore, grid points close to the ocean represent
averages that include the typically much smaller ocean sig-
nals, resulting in strong reductions of TWS signal ampli-
tude (e.g., along the west coast of the United States). Only
very few regions exist where the ocean signals are large
enough to potentially leak onto land and interfere with ter-
restrial water storage signals (e.g., Gulf of Carpentaria,
north of Australia). Since an ocean model is removed in the

GRACE processing, ocean-to-land leakage effects are al-
ready significantly reduced.

4. Restoring Signal Attenuation
4.1.

[14] We quantify leakage error with the root-mean-
square difference (RMSD) between the unfiltered and the
filtered monthly mean GLDAS-NOAH water storage esti-
mates. In order to reduce this leakage error, we derive a
gain factor k by minimizing the misfit between the unfil-
tered, true (ASy), and filtered (ASy) storage time series
through a simple least square regression:

Basin-Scale Gain Factors

M = "(ASr — kASF)?, (1)
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Figure 2. Root-mean-square variability of observed (left column: GRACE CSR-RL04) and simulated

(right column: GLDAS-NOAH) terrestrial water

storage: (top row) unfiltered GRACE TWS and

GLDAS-NOAH TWS at 1 x 1° resolution; (bottom row) spectrally truncated at degree and order 60,
de-striped after Swenson and Wahr [2006], and smoothed with a Gaussian of 300 km width. Note the dif-
ferent color range for the unfiltered GRACE data. Units: mm-H,O.

where the summation is over the 84 months of GLDAS-
NOAH data used here. Several studies have used this
approach to restore TWS signals over hydrological drain-
age basins [e.g., Famiglietti et al., 2011; Swenson and
Wahr, 2007 ; Klees et al., 2007 ; Chen et al., 2007].

[15] As an illustrative example, we use equation (1) to
derive the gain factor for the basin-mean monthly TWS in
the Columbia River basin in the northwestern United States
(Figure 3). Applying the GRACE filters to GLDAS-NOAH
leads to a significant leakage error. A gain factor of 1.44,
calculated from equation (1), reduces the variance of the
leakage error by nearly 85%. When the gain factor as deter-
mined from GLDAS-NOAH is applied to actual GRACE
observations, it becomes evident that GLDAS-NOAH under-
estimates seasonal TWS variations in the Columbia River
Basin (Figure 3, bottom panel), likely due to missing ground-
water and river-storage components in the present GLDAS-
NOAH version (M. Rodell, personal communication, 2011).
This example also underscores one important aspect of the
scaling approach: it does not seek to match GRACE meas-
urements to synthetic model amplitudes, but uses the syn-
thetic model patterns to determine relative signal attenuation
based on the ratio of true and filtered signal amplitudes.

[16] Table 1 summarizes the filter parameter-dependent
basin-scale gain factors (k;, second column) for river basins
of various drainage areas and locations. Gain factors for
basins having large areas are typically close to 1, while
smaller basins have larger gain factors. The third column of
Table 1 lists the initial leakage error (EY), while the fourth
column shows the residual leakage error (Ej, ) present
after the gain factor is applied to the filtered time series.
Comparing Eé and Eé.k,, shows that significant reductions in
leakage error variance can be obtained after the application
of the gain factor.

4.2. Grid-Point Gain Factors

[17] Previous studies [e.g., Famiglietti et al., 2011;
Swenson and Wahr, 2007 ; Klees et al., 2007; Chen et al.,
2007] have used a scaling approach, computing gain factors
for specific regions. To create a global, gridded-data set of
GRACE TWS observations that can be averaged over arbi-
trary regions, we apply the scaling procedure to all land
points on a 1 x 1° grid. This results in map of gain factors k,
(Figure 4), that, when applied to the filtered data, restores a
significant portion of the signal attenuation. As discussed in
more detail below, applying the gain factors first and then
averaging leads to regional averages that are comparable to
applying a single gain factor to an unscaled regional average
(see also Figure 3 for the Columbia River as an example).

[18] The gridded-gain factors shown in Figure 4 are gen-
erally close to 1, indicating that signal damping is weak
over the majority of interior land points. Along coastlines,
gain factors significantly larger than 1 are required due to
signal interference with the much weaker ocean signal.
Areas of low TWS variability (e.g., Northern Africa) are
susceptible to leakage errors from larger signals of sur-
rounding regions. In these locations, gain factors less than
1 are then needed to reduce the signal amplification. As fil-
tering may not only change the amplitude, but also change
the shape of the signal through interference with out-of-
phase signals from surrounding regions, it is instructive to
examine the grid point correlation between the filtered and
unfiltered model data (Figure 5). Correlation values close
to 1 indicate that the shape (mostly dominated by seasonal
variations) is not strongly affected by the filter, whereas
lower correlation values indicate that the spatial averaging
caused by the GRACE filter has changed the shape of the
signal. This typically occurs where strong gradients in the
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Figure 3. Basin-mean water storage for the Columbia River basin: (top) original and filtered GLDAS-
NOAH, (middle) original versus the scaled basin-mean TWS (basin-scaled and pixel-scaled version)
GLDAS-NOAH, and (bottom) original GLDAS-NOAH TWS compared to scaled GRACE-TWS (CSR-

RL04). Units: mm-H,0.

phase of the TWS signal exist, such as transitions between
mountains and plains. In those areas, the spatial decorrela-
tion length is often much shorter than what GRACE can
resolve, and therefore signal leakage and interference are
strong. The linear scaling approach (equation (1)) is less
effective at restoring the signals in those cases.

4.3. Gridded Uncertainty Estimates

[19] A previously estimated GRACE measurement error
[Wahr et al., 2006] did not account for the leakage error
from the TWS signals. Figure 6 shows new estimates of the
GRACE measurement error (top) and leakage (middle) error
for the gridded-GRACE TWS data set. The measurement
errors are the result of multiplying the filtered GRACE mea-
surement error map (Figure 1) by the grid point gain factor
map (Figure 4).

[20] At each grid point, the leakage error estimate has
been multiplied by the ratio of the RMS-variability’s of the
filtered GRACE and GLDAS-NOAH time series:

RMSgrace
E\ = RMS(ASy — kASp) ——— 1A% 2
g (ASy F) RMS,oqe; 2)

with S7 and kASr as defined in equation (1). The reason
for this is that in some cases there is a significant discrep-
ancy between the amplitudes of the GRACE and modeled
TWS signals. The total error at each grid point is then
obtained by summing leakage and measurement errors in
quadrature.

[21] Globally, the application of the gain factors consider-
ably reduces leakage errors. Figure 7 shows a histogram of
the leakage error for the gridded TWS estimates before (blue
line) and after (black line) scaling. The total area of grid points
having leakage errors greater than ~5 cm is significantly
reduced, leading to a more sharply peaked histogram with
more areas having leakage errors in the 2-3 cm range. In par-
ticular, signals along coastal areas are much better recovered.

[22] The error components shown in Figure 6 reflect the
expected uncertainty in the time series of each individual
grid point. However, the errors in the gridded data are spa-
tially correlated, so the actual error in a regional average time
series cannot be obtained by simply averaging the variances
from all points within a given region. To obtain a more accu-
rate uncertainty estimate, we introduce an approximation for
the error covariance that is a function of the distance between
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Table 1. Gain Factors, Leakage, Measurement, and Combined Errors for Unfiltered and Filtered TWS Variations for Various Drainage

Basins®
Error Error
Error (Leakage) (Measurement) (Combined) RMS Ratio
Basin ky (ELyP* (E}4,)°° (ELy*e (EpH (Eme" (EL) (ELY (GRACE/GLDAS)

Amazon 1.02 7.6 7.1 7.0 9.2 8.8 11.5 11.2 1.8
Zaire 1.14 7.8 4.9 5.5 12.2 11.3 11.8 12.6 1.1
Mississippi 1.00 4.7 4.7 5.1 9.6 6.4 10.7 8.2 1.2
Ob 1.00 2.0 2.0 3.6 9.3 6.1 9.5 7.1 1.1
Parana 1.18 12.3 7.7 6.3 12.6 12.3 13.1 13.8 1.1
Yenisei 1.03 3.8 35 5.0 9.6 6.8 9.9 8.4 1.2
Lena 1.10 4.7 2.5 53 10.3 7.9 9.6 9.5 1.3
Niger 1.06 5.4 4.1 5.9 11.5 10.5 11.6 12.0 1.4
Tamanrasett 0.62 8.6 6.8 5.0 7.3 6.1 13.6 7.9 32
Changliang 1.03 7.6 7.5 11.8 10.9 11.8 12.9 16.6 2.1
Missouri 0.78 14.0 8.7 6.9 8.2 6.2 13.6 9.3 1.5
Amur 1.17 5.8 32 6.6 12.4 10.1 11.0 12.1 1.1
Mackenzie 0.97 4.6 43 7.4 9.8 7.5 11.0 10.5 1.1
Ganges 1.11 134 8.5 12.8 12.4 115 14.0 17.2 1.5
Volga 1.08 4.8 2.2 3.9 11.3 8.4 10.7 9.2 0.9
Zambezi 1.11 14.1 7.0 7.6 13.3 16.9 13.9 18.5 1.2
Indus 1.26 254 23.5 17.2 15.4 12.6 26.5 21.3 2.1
Orinoco 1.23 39.9 27.0 20.7 16.4 18.3 30.1 27.6 2.7
Murray 1.34 18.3 16.5 8.1 16.9 153 20.7 17.3 2.4
Yukon 1.23 20.8 12.5 16.4 13.3 11.5 16.6 20.1 1.5
Colorado (Arizona) 1.01 9.3 9.3 6.7 12.6 10.9 15.5 12.8 1.7
Danube 1.15 14.6 11.0 9.1 14.1 11.6 16.5 14.8 1.1
Mekong 1.51 55.9 19.8 18.1 18.9 23.1 235 29.4 1.9
Columbia 1.44 31.9 13.5 15.6 17.5 15.5 18.2 21.9 1.6
Okavango 1.10 8.6 6.9 6.9 15.1 18.5 15.4 19.7 0.9
Kolyma 1.15 9.9 7.1 8.5 13.6 12.0 13.8 14.7 1.2
Arkansas 0.99 19.4 19.4 15.3 12.7 12.1 233 19.4 1.3
Irrawaddy 1.21 83.5 79.2 39.2 18.4 21.8 80.6 44.8 1.9
Godavari 1.31 36.0 13.9 14.6 19.8 27.8 20.5 314 1.3
Huai 1.47 28.8 20.7 17.1 20.8 227 25.1 28.4 1.4
Fraser 1.56 53.7 26.3 30.6 20.0 21.1 29.2 37.2 1.6
Anadyr 1.67 39.1 25.0 18.7 21.9 23.8 28.2 30.2 1.6
Chubut 1.98 345 222 20.5 26.3 28.8 25.9 354 1.6
Rufiji 1.23 31.2 23.4 27.6 19.0 26.5 28.1 383 1.5
Taz 1.16 17.0 11.1 11.1 14.2 153 16.5 19.0 1.1
Sacramento-San Joaquin 2.90 95.2 47.0 27.7 39.6 39.1 48.9 48.0 2.0
Pyasina 1.47 35.8 17.3 13.0 18.9 22.3 21.6 25.8 1.3
Essequibo 1.22 49.8 42.7 36.3 19.5 26.6 455 45.0 2.0
Koksoak 1.45 239 14.4 9.7 18.6 21.1 19.2 232 0.9
Loire 1.44 21.6 10.7 13.5 19.7 21.7 17.4 25.5 0.8
Narmada 1.29 36.1 16.4 16.5 19.2 25.0 22.1 29.9 1.2
Flinders 1.28 28.0 24.1 15.1 21.0 31.9 29.2 353 1.2
Cunene 1.37 27.4 20.0 13.9 22.7 347 26.0 37.4 0.8
Douro 2.14 46.8 17.0 17.5 30.3 35.7 222 39.7 1.0
Barito 2.46 94.4 36.9 335 44.0 70.8 41.0 78.4 2.4
Gambia 1.49 455 23.4 24.4 24.3 39.7 28.5 46.6 1.3

“Basins are ordered by decreasing size. The gain factors k; are unitless, all errors are in units of mm of eq water height.

PLeakage error based on GLDAS.

“Basin-mean residual leakage (k; applied).

4Grid-based GLDAS leakage error.

°Adjusted for RMS-ratio GRACE/GLDAS.

Basin-mean GRACE measurement error [Wahr et al., 2006].
£Grid-based GRACE measurement error.

%‘Adjusted for basin (footnote f) and gridded (footnote g) gain factors.
'Total error from basin means (see footnotes ¢ and f).

JTotal error from basin means (see footnotes d and g).

grid points. A Gaussian window is used, whose half-width is
specified by a parameter d, representing the distance at which
the function has decreased to half its maximum value. The
covariance between two points x; and x; is then given by

—d?
Cov(x;,x;) = 0;0;exp (ﬁ) ; 3)
0

where o; and o; are the standard deviations of the uncer-
tainty estimates for grid points i and j, exp(. . .) is the corre-
lation, d;; is the distance between grid points, and d, is a
decorrelation-length scale. The error variance of a regional
mean TWS estimate then becomes

N N
Var:E E w; w; Cov(x;, x;),

i=1 j=1

“4)
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Figure 4. Gain factors for GLDAS-NOAH monthly TWS variations derived by least-square fitting
each filtered grid point (at 1 x 1° resolution) time series to the unfiltered time series (see equation (1)).

where w; is the area weight at each grid point in the basin.
The values of dy, were chosen so that the error budget
obtained using the gridded data set matched the budget
obtained when computing the regional average TWS time
series directly; the area weights w; simplify to 1/(number
of grid points) if one assumes equal contribution from each
pixel to the basin mean TWS. For the present choice of
filter parameters, we used di’ = 300 km for the measure-
ment errors, and d) = 100 km for the leakage errors. We

determined these values by comparing the error budgets
based on basin- and grid-point-scaled time series for a large
number of river basins.

[23] Column 5 in Table 1 shows the residual leakage
error (E!) when basin-averaged time series are computed
using the griddedgain factors, applied to the GRACE TWS
data set. Using these grid-point gain factors k,, most basin
averages have a similar reduction in RMSD relative to the
unscaled estimates as the basin-scale gain factors (column 4),

Figure 5. Correlation between filtered and unfiltered time series for monthly TWS variations from
GLDAS-NOAH.
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Figure 7. Histogram of RMS differences between unfil-
tered GLDAS monthly mean TWS and the filtered GLDAS
amplitudes (blue line), and the filtered GLDAS amplitudes
scaled with a gain factor based on all monthly anomalies
(black line), and scaled with a gain factor based on a mean
seasonal signal only (red line).

typically agreeing to within 20% or less. This level of agree-
ment can also be seen in the basin-scale- (column 6) and
grid-point (column 7)—measurement error estimates. Total
error estimates, obtained by summing measurement and leak-
age errors in quadrature, are shown in columns 8 and 9.
Time series for large river basins have RMS uncertainties
that are generally <2 cm, while smaller basins have RMS
uncertainties ~3-4 cm.

[24] An additional amount of uncertainty may arise from
uncertainties of the model-based gain factors themselves.
The gain factors shown in Figure 4 are based on GLDAS-
NOAH. We evaluated the accuracy of the gain factors
by deriving gain factors for the Community Land Model
(CLM4) hydrology model [Oleson et al., 2008], and applied
the CLM4-based gain factors to the filtered GLDAS-NOAH
data. The heterogeneous amplitude reconstructions (e.g.,
GLDAS-NOAH with CLM4-derived gain factors), yield re-
sidual leakage errors that are similar to the homogeneous
amplitude reconstruction (e.g., GLDAS-NOAH with GLDAS-
NOAH-derived gain factors) when averaged over the basins
in Table 1. The differences in the residual leakage errors
for different gridded-gain factors are similar to the error
differences between basin-scaled and grid-point-scaled ba-
sin averages. Out of the 46 basins in Table 1, the residual
leakage error for 24 basins agrees to within 10%, and 40
basins have residual leakage errors that agree to within
25%. For very small basins that cover only a few grid
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points (e.g., in our sample, the Cunene), the residual leak-
age errors may increase by up to 70%.

[25] As a general rule for the application of gain factors,
it must be kept in mind that the estimates of TWS toward
the smallest spatial scales can potentially be biased toward
the hydrology model on which the gain factors are based.
Although a user may use the time series of a single pixel
(with its possibly large uncertainty), the motivation for the
distributed gain factor data is to allow the user to create
time series for arbitrarily shaped regions. As the size of the
averaging region increases, the errors generally decrease.

4.4. Modes of Temporal TWS Variability With
Different Spatial Scales

[26] The approach in equation (1) to estimate gain fac-
tors by minimizing the misfit of the entire time series with
a single gain factor lumps together month-to-month vari-
ability, seasonal signals, and long-term trends. This issue of
different temporal scales concerns both the grid point and
the basin-scaling techniques. When the TWS signal con-
tains different modes of temporal variability that have dif-
ferent spatial patterns, a single gain factor may not yield
accurate results. Chen et al. [2007] found slightly different
attenuation effects for annual and semiannual components
for several large river basins, but the differences were rela-
tively minor for small smoothing radii as used here
(300 km). Moreover, the semiannual TWS amplitudes are
generally much smaller than the annual amplitudes (in
GLDAS-NOAH and in GRACE), so that the impact of
scaling the two components separately was further reduced.
Over river basins larger than ~0.6 Mkm?, we find that gain
factors for a mean monthly climatology and fitted semian-
nual and annual terms agree mostly to within a few percent
(not shown), indicating that a single gain factor is applica-
ble for seasonal variations with the present choice of filter
parameters. In addition, we tested the performance of a
gain factor based on a mean seasonal signal only (multiyear
monthly means in the simulated TWS fields), and find that
the error reduction is very similar to the case where the
gridded-gain factor is based on all monthly TWS anomalies
over the 7 yr of model data (Figure 7).

[27] As the GRACE satellites now provide observations
of ~9 yr of monthly TWS, interannual variations and
trends can be resolved. It is therefore important to assess
if the scaling described above is applicable beyond the
seasonal timescale. The simulated long-term signals over
some regions agree well between GRACE and GLDAS-
NOAH (e.g., southeastern United States, La Plata), but this
is not the case for many other regions (e.g., northwest
India, Amazon). Hydrological models often do not capture
the full range of interannual TWS variations due to missing
processes and storage parameterizations, such as ground-
water storage or water extraction for irrigation. This has
been exploited to extract these unmodeled signals by disag-
gregating the GRACE observations into water storage

Figure 6. GRACE TWS error maps. (Top) GRACE-measurement errors are based on the method of Wahr et al. [2006],
and are scaled with the grid point gain factors from Figure 4; (middle) the residual leakage error estimate, scaled by the
ratio of the RMS variability of GRACE and GLDAS-NOAH;; (bottom) total errors from combining leakage and measure-
ment errors in quadrature. Note that although the errors are spatially correlated, averaging over a region will reduce the
grid point errors, e.g., for the Amazon basin the total error is ~11.3 mm-H,O (Table 1). Units: mm-H,O.
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components. However, unmodeled TWS signals limit the
use of synthetic data to infer a global map of gain factors
that can be applied to actual GRACE observations.

[28] To illustrate this point, we use an example based on
Rodell et al. [2009], who found significantly different gain
factors for the seasonal and secular components of the
observed TWS signal in northwest India (Figure 8a). The
seasonal signal (TWS?®) was well correlated over a broad
region beyond the averaging region, and therefore not sig-
nificantly attenuated. In contrast, the interannual compo-
nent was assumed to be originating from the relatively
small averaging region only (based on prior knowledge
about the spatial extent of the Indus aquifer), and therefore
was significantly attenuated in amplitude. In such a case,
the leakage error for the long-period signal (TWS?) must
be treated separately from the seasonal variations (TWS®)
by deriving and applying multiple gain factors:

TWS = K'TWS® + kPTWS?. (3)

If the spatial extent of the interannual signal TWS? is
known, and if it is only present in GRACE but not in a hy-
drology model, the gain factor £” can be estimated by a
simple binary distribution of 1 over the a priori assumed
region, and zeros outside of that region [Rodell et al.,
2009]. For the NW-India aquifer and the present choice of
filtering parameters, the basin-scale seasonal gain factor is
then ~1, whereas the longer-period signal requires a gain
factor of k¥ = 3.2.

[29] Had the spatially confined trend signal TWS?
actually been present in GLDAS-NOAH, the reconstruction
of the true signal would have revealed that the decomposi-
tion of the combined TWS signal into seasonal and long-
period anomalies is necessary in order to estimate &° and I§"
from the synthetic data. Without this temporal decomposi-
tion, the average gain factor is ~1.7, which would overesti-
mate the seasonal variations, but underestimate the trend
(Figure 8b). Only with equation (5) can the true signal be
accurately reconstructed. Our tests show that this works
equally well for the basin-average and grid-point-scaling
approach (Figure 8c). The observed TWS changes over the
NW-Indus aquifer are rather extreme in amplitude, but this
case demonstrates that gain factors based on simulated TWS

Kemel: Indus Plain River aguifer; trunc=60, GW=0, nds. 0.25

1
0.159
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change patterns in some cases may not be used to infer long-
period TWS changes of actual GRACE observations; a
case-by-case analysis may still be necessary, in particular for
smaller regions, such as aquifers or surface reservoirs.

5. Summary and Discussion

[30] GRACE data processing seeks a balance between
accuracy and spatial resolution. The level of noise can be
reduced by filtering the data, and a variety of different fil-
ters have been developed for this purpose, each modifying
the data in a specific and characteristic way. However,
along with the error reduction comes some loss of signal.
In many cases, measurement noise is substantially reduced
leaving signal loss as the dominant term in the error budget
of the filtered data. This type of error (leakage) can be esti-
mated by applying the filter to a model, and comparing the
original and filtered-model fields. In this paper, we have
described one way of using the information supplied by such
an experiment, i.e., a multiplicative gain factor that reduces
the differences between the original and filtered model time
series in a least square sense. It allows users of gridded-
GRACE TWS observations to average over arbitrary regions
of their choice and compare it to other gridded data (e.g., a
hydrology model or groundwater data set), without having to
apply the GRACE filtering process to that data in the spheri-
cal-harmonic domain. As detailed above, small spatial scales
come at the expense of larger errors, in particular from leak-
age. Therefore, increasing the size of an averaging region
generally reduces errors and uncertainties considerably.

[31] The gain factors derived here are based on simulated
TWS variations, and are independent of the actual GRACE
observations. Their purpose is to extrapolate the GRACE
data to finer spatial scales that are not well resolved by the
current GRACE satellites. It is important to keep in mind
that while these fine scales are not truly measured by
GRACE, our gridded-TWS estimates represent these scales
to the degree to which a scaling relationship can recover
them. This scaling relationship also enables us to quantify
leakage and measurement errors based on signal patterns of
TWS. The magnitude of the simulated TWS variations is
not crucial to the calculation of the gain factors because
they aim at restoring relative amplitudes. Thus, the spatial
patterns of TWS, which are in part controlled by the

original
reconstructed (basin-scaled)

- - - reconstructed (pixel-scaled)

2004 2005 2006 2007 2008

Figure 8.
spectral truncation of the exact mask at degree 1 = 60. (b) Mean TWS over the aquifer based on
GLDAS-NOAH plus an added trend (—4 cm yr ') for the unfiltered, filtered, and reconstructed data
using only one gain factor as in equation (1); (c) as (b), but decomposing the signal into seasonal and
long-period components and deriving separate gain factors for each using equation (5). See Rodell et al.
[2009] for a more detailed discussion of TWS in this region.

2009 2010

T T T T T T T
2004 2005 2006 2007 2008 2009 2010

(a) NW-India Indus aquifer averaging region (inside polygon) and averaging kernel after
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large-scale climate patterns of the forcing data (e.g., pre-
cipitation and radiation), determine the magnitude and
spatial variability of the gain factors. In places where im-
portant processes are absent from the model, such as melt-
ing of ice sheets and glaciers, or human withdrawal of
groundwater, the model-derived gain factors will likely not
be accurate. In such cases, a more comprehensive analysis
is required to estimate and restore the possible signal loss
in the data.

[32] Most of the model-simulated TWS changes occur
on the subseasonal to seasonal timescales. The derived gain
factors therefore are optimized to recover these frequen-
cies, and may not be suitable for interannual or long-term
signals. A preliminary comparison of trends in GRACE
data and trends in hydrological models indicates that it is
not advised at this point to produce a global map of long-
period gain factors based on these models. For these types
of signals, it is recommended that a user carefully examines
the model used to estimate filter effects, and if possible,
augment the model [e.g., Rodell et al., 2009].

[33] The presented method of gridded-gain factors and
corresponding errors demonstrates that estimating gain
factors on a grid point basis is a viable alternative to the basin-
scaling approach that has been used previously. This conclu-
sion is drawn by comparing some prominent river basin
averages, both large and small. Thus, providing gridded-
gain factor and error maps along with gridded-GRACE
observations over land should enable users to recover atte-
nuated signals from gridded-GRACE data, and quantify the
appropriate uncertainty that takes measurement and leak-
age errors into account. The differences between the basin-
and grid-point-scaling approach generally yield total errors
that agree to within 20% over the regions presented here,
but we cannot rule out that grid-point gain factors yield
worse results than the basin-scaling approach over some
user-defined regions. The map of the combined leakage and
measurement uncertainty should guide GRACE users in
treating regional averages carefully where significant scaling
is necessary (Figure 4), or where the combined error is large
(Figure 6). Mountainous areas in particular are affected due
to the short TWS decorrelation length scales there. Alterna-
tive signal-restoring methods are possible and may be more
or less suitable for a particular region under investigation.
For example, mass loss estimates of the Greenland and Ant-
arctic ice sheets from GRACE can be obtained in an iterative
procedure [Chen et al., 2009], or by designing optimized
special-averaging kernels [Swenson and Wahr, 2002].
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