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In this contribution we present gravity field monthly solutions from GRACE and GRACE £ f 5 - EE ) Elgilnlgeise E;Tﬁgns%ﬁtigrrgom

Follow-On (GRACE-FO) Level-1B sensor data. The monthly solutions are computed with
our recently updated GRACE-SIGMA software developed at the Institute of Geodesy,
Leibniz University Hannover. The solutions are obtained using a two-step approach. In a
first step, the orbits of the two satellites are pre-adjusted by estimating local arc
parameters. In a second step, the monthly gravity field potential in terms of normalized
spherical harmonic coefficients is recovered. Our new pre time series from GRACE Is
presented In terms of error degree standard deviation and equivalent water height values | ~T
from Greenland. In addition the estimation of C,, now fits much better to SLR data. We I S SR R R
further present some LRI only solution from GRACE-FO and compare them to KBR only S ”e
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solutions. Flg 2. MaSS variations | In terms Of F|g 3: Corresponding error degree degree [
Equivalent Water Height [EWH] in standard deviations w.r.t. mean
_ Greenland GRACE (2903—20_16) model from all centers. OIld: Fig. 7: Error degree standard deviation
B — GRACE-SIGMA W.I’.t. GOCOO06s. Gaussian fllt_er Grey, new: Black comparison from KBR and LRI.
applied (400km). C20 replaced with Black: KBR 5s sample rate, Red:
The processing approach for the solutions is the method of dynamic orbit and gravity field SLR values. Grey: old, Black: new LRI 2s sample rate, Yellow: KBR
determination based on the equations of motion, also often referred to as the variational _— 10s siamptle rate, Blue: LRI 10s
equations (VE) approach [1]. The VE approach is implemeted in a compact all-Matlab * = >ample rate
program named GRACE-SIGMA. A generalized overview over the gravity field recovery assaees -
from GRACE and GRACE-FO Level-1B data products based on VE can be seen in Fig. 1.
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F F -4.841695 [— . . . .
- e . mofj’:"eng ] We are experimenting on combined solutions from KBR range rates and LRI range
Kin. Orbit ) el rates. They are currently combined on NEQ-Level with different weightings. We are
—_ using the equation
[
I -4.841705 —
SCA1B attitude v | i={CDK,L}
- OF;eference ’ Orbit, STM and SM Where C and D denote the GNSS observation of the two Satellites and K and L are
ti integrati | | | | | | | : : . : .
= >ervation HEETation s the KBR rsp. LRI observations (range rate). 4; is the corresponding design matrix
and P; the specific weighting matrix.
ACC1B non-grav.
. Fig. 4: C,, spherical harmonic coefficient compared to SLR data. Grey: old, —
i ? ? Black: new —
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Fig. 1: Simplified gravity field recovery procedure. " F-GRACE FOLLOW-ON POST-FIT RESIDUALS
We compute the post-fit range rate residuals as
® C — CURRENT GFR STANDARD PROCESSING V=A_cpX. +AgcpRe —lep :
Fig. 8. Error degree standard deviation of
Tab. 1: Force models applied for orbit modeling. R . . . . . combined solutions on NEQ-Level
where v: estimated LRI range rate post-fit residuals, A_cp: design matrix of arc- with different weights
Effect Old version Updates . Arc-len.gth:_?;h | spe_cmc parameters_,_ Agcp: design Amatrlx _of spherical _harmonlc cc_>efﬂuen_t; X.:
= Numerical integration: estimated arc-specific parameters, Xg: estimated spherical harmonic coefficients,
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