Imprints of Ocean Chaotic Intrinsic Variability on Bottom Pressure and Implications for GRACE Data Interpretation and Dealiasing

Mengnan Zhao^[1], Rui Ponte^[1], Thierry Penduff^[2], Sally Close^[3], William Llovel^[3] and Jean-Marc Molines^[2]

[1] Atmospheric and Environmental Research CCC
[2] Université Grenoble Alpes, CNRS
[3] Laboratore d'Océanographie Physique et Spatiale, University of Brest

Background

Chaotic Intrinsic Variability:

Generated by nonlinear oceanic processes, rather than driven directly by the atmosphere.

Implications for GRACE/GRACE-FO:

- Interpreting ocean bottom pressure (p_b) in non-eddy-resolving models and GRACE/GRACE-FO measurements
- Dealiasing procedure

Key Points

Intrinsic variations on p_b are

- substantial in many regions and exceed atmospherically driven ones in eddy-rich areas,
- important on scales larger than mesoscale over a range of spatiotemporal scales, which have imprints on GRACE measurements.

OCCIPUT Large Ensemble Simulation

- OceaniC Chaos ImPacts, strUcture, predictability (OCCIPUT)
- 50 ensemble members, driven by the same atmospheric forcing
- Ensemble members distinguished by perturbations in initial conditions
- Horizontal resolution ~1/4°, eddy permitting, 1995—2015

forced amplitude σ^f : standard deviation of the ensemble-mean

intrinsic amplitude σ^i : standard deviation of the deviation from the mean

Intrinsic Variations in Subseasonal Band

• period <60 days, GRACE/GRACE-FO dealiasing period:

• Highest σ^i (>1.5 cm) in regions with strong instabilities and eddies.

• In lower-latitudes and eddy-rich regions, p_b fields are more chaotic and less predictable from just knowledge of the atmospheric forcing fields.

Intrinsic Variations in Subseasonal Band

• Importance of σ^i in GRACE/GRACE-FO aliasing:

- σⁱ is important at spatial scales resolved by GRACE data, over lower latitudes and eddyrich sites.
- Important intrinsic variations indicate challenges to accurately dealias GRACE data.

Intrinsic Variations in Intra-annual Band

- Intrinsic variations are substantial almost everywhere. $\sigma^i > \sigma^f$ in almost 1/4 of the ocean area.
- Two factors contribute to the large σⁱ for intra-annual band: [1] dominant timescale for mesoscale eddies; [2] energy inverse cascade.

Conclusions

Intrinsic variations on p_b are

- substantial in many regions and exceed atmospherically driven ones in eddy-rich areas,
- important on scales larger than mesoscale over a range of spatiotemporal scales, which have imprints on GRACE measurements.

Our results highlight the necessity of addressing effects of intrinsic variations when interpreting and dealiasing GRACE/GRACE-FO data.